Home Top Ad

Responsive Ads Here

Income Determination Solved Problems

Share:


This page consists of various solved problems related to income determination that were asked in different university examinations in different years.


1-Given, `C=60+0.8Y_d`, `I=100`,  `T=80` & `G=80`, 
Find; a- Equilibrium income of the economy,
           b- Value of multiplier,

Solution;
a- Calculating equilibrium income,
The equilibrium identity is given as;
`Y=C+I+G.......(i)`

substituting the value of `C`, `I` & `G`, we get;
`Y=60+0.8Y_d+100+80`
`Y=0.8(Y-T)+240`             `\becauseY_d=Y-T`

Substituting the value of `T`, we get;
`Y=0.8(Y-80)+240`
`Y=0.8Y-64+240`
`Y-0.8Y=176`
`Y(1-0.8)=176`
`Y=\frac{176}{0.2}`
`Y=880`  Equilibrium income,

b- Calculating multiplier,
Let us consider consumption function,
Where, `a=60`
              `b=0.8`
Multiplier `=\frac{1}{1-b}`

Substituting the value of `b` we get,
                    `=\frac{1}{1-0.8}`
                    `=\frac{1}{0.2}`
                         `=5` 
2- Given the following data for an economy,
`C=40+0.9Y_d`
`I=60`, `G=30` and `T=20`
Find;
a- Equilibrium income,
b- Equilibrium income if taxes increases by `10`, and T-multiplier,
c- Equilibrium income if government expenditure falls by `20`, and G-multiplier,
 
Solution;
a- Calulating equilibrium income,
The equilibrium identity is given as;
`Y=C+I+G`

substituting the value of `C`, `I` & `G`, we get;
`Y=40+0.9Y_d+60+30`
`Y=0.9(Y-T)+130`             `\becauseY_d=Y-T`

Substituting the value of `T`, we get;
`Y=0.9(Y-20)+130`
`Y=0.9Y-18+130`
`Y-0.9Y=112`
`Y(1-0.9)=112`
`Y=\frac{112}{0.1}`
`Y=1120`  Equilibrium income,

b-T-multiplier and Equilibrium income when taxes increases by `10`;
Change in income after an increase in tax by `10`;
`△Y=Y+(△T×\frac{-b}{1-b})`                            `\becauseT_m=\frac{-b}{1-b}`
`△Y=1120+(10×\frac{-0.9}{1-0.9})`                 Given`\because△T=10`, and `b=0.9`
`△Y=1120+(-90)` 
`△Y=1030` 

T-Multiplier,
`T_m=\frac{-b}{1-b}`
`T_m=\frac{-0.9}{1-0.9}`                                    Given `\because\b=0.9`
 `T_m=\frac{-0.9}{0.1}` 
`T_m=-9`

c- G-multiplier and Equilibrium when government expenditure falls by `20`,
Change in income after a fall in government expenditure by `20`;
`△Y=Y+(-△G×\frac{1}{1-b})`                            `\becauseG_m=\frac{1}{1-b}`
`△Y=1120-(20×\frac{1}{1-0.9})`
`△Y=1120-(\frac{20}{0.1})`
`△Y=1120-200`
`△Y=920`

G-Multiplier
`G_m=\frac{1}{1-b}`
`G_m=\frac{1}{1-0.9}`                                       Given `\because\b=0.9`
`G_m=\frac{1}{0.1}` 
`G_m=10`

3-  The information about the economy of a country are as follows.
`C=100+0.6Y_d`
`I=90`,      `G=60`,     and    `T=20+0.2Y` 
On the basis of the information find;
a- Equilibrium income and consumption expenditure,
b- The amount of tax that the government collects,
c- What budget policy the government adopts, surplus or deficit,

Solution;
a- Equlibrium income & consumption expenditure,
The equilibrium identity is given as;
`Y=C+I+G`

substituting the value of `C`, `I` & `G`, we get;
`Y=100+0.6Y_d+90+60`
`Y=0.6(Y-T)+250`             `\becauseY_d=Y-T`

Substituting the value of `T`, we get;
`Y=0.6{Y-(20+0.2Y)}+250`
`Y=0.6(Y-20-0.2Y)+250`
`Y=0.6Y-112-0.12Y+250`
`Y=0.48Y+138`
`Y-0.48Y=138`
`Y(1-0.48)=138`
`Y=\frac{138}{0.52}`
`Y=265.38`  Equilibrium income,

Consumption expenditure,
Given the consumption function as;
`C=100+0.6Y_d`
`C=100+0.6(Y-T)`                      `\becauseY_d=Y-T`

Substituting the value of `T`, we get; 
`C=100+0.6{Y-(20+0.2Y)}`     `\because\T=20+0.2Y`

Subtituting the value of `Y` we get;
`C=100+0.6{265.38-(20+0.2×265.38)}`
`C=100+159.23-20-53.07`
`C=186.16`    Consumption expenditure,

b- The total amount of taxes that the government collects;
`T=20+0.2Y`

Substituting the value of `Y` we get;
`T=20+0.2×265.38`                `\becauseY=265.38`
`T=20+53.07`
`T=73.07` Amount of taxes,

c- The budgetary policy that the government adopts;
If the amount of government expenditure `G` equals its tax-revenue`T`, the government is adopting balanced buget policy. If `G>T`, it is adopting a deficit budget policy and if `G<T`, it is adopting a surplus budget policy.

In this problem `G=60` and `T=73.07`,
Here, `G<T` by `13.07`
It implies that the government is adopting surplus budget policy.

4-Given `C=150+b(Y-40-tY)`,    `I=50`,    `G=40`,    `X=15`,    and    `M=10+0.12Y`
The marginal propensity to consume is equal to `0.9` and proportional income tax rate is equal to `0.2`;
Find;
a- Equilibrium national income,
b- Foreign trade multiplier,
c- Equilibrium value of imports,
d- If equilibrium `NI` falls short of full employment income by `60`, how much government should increase its expenditure to attain full-employment?

Solution;
a- Equilibrium national income,
The equilibrium identity is as follows,
`Y=C+I+G+(X-M)`

Substituting the value of `C`, `I`, `G`, `X` and `M` we get;
`Y=150+b(Y-40-tY)+50+40+{15-(10+0.12Y)}`

Substituting the value of `b` and `t` we get;
`Y=150+0.9(Y-40-0.2Y)+50+40+{15-(10+0.12Y)}`
`Y=150+0.9Y-36-0.18Y+50+40+15-10-0.12Y`
`Y=209+0.6Y`
`Y-0.6Y=209`
`Y(1-0.6)=209`
`Y=\frac{209}{0.4}`
`Y=522.5`

b- Foreign trade multiplier,
Foreign trade multiplier is calculated as;
`F_m=\frac{1}{1-b(1-t)+tm}`

Substituting the values of `b=0.9`, `t=0.2` and `m=0.12` we get;
`F_m=\frac{1}{1-0.9(1-0.2)+0.2×0.12}`
`F_m=\frac{1}{1-0.72+0.024}`
`F_m=\frac{1}{0.304}`
`F_m=3.29`

c- Equilibrium value of imports,
Equilibrium value of imports can be calculated as;
`M=10+0.12Y`            Given
Substituting the value of `Y` we get;
`M=10+0.12×522.5`
`M=10+62.7`
`M=72.7`

d-Government expenditure to attain full-employment is calculated as;
`△Y=F_m×△G`
`60=3.29×△G`                `\because\F_m=3.29` and `\because\△Y=60`
`\frac{60}{3.29}=△G`
`△G=18.23` 

To attain full-employment, government expenditure should be increased by `18.23`.

5- Given, `C=1200+0.8Y_d`,    `I=1500`,    `T=2500`,    and    `G=5300`
Based on the information, find;
a- Equilibrium income level,
b- Government expenditure multiplier,
c- By how much the level of income will change, if tax changes to `T=2500+0.2Y`?

Solution;
a- Equilibrium income level,
The equilibrium identity is given as;
`Y=C+I+G`

Substituting the value of `C`, `I` and `G` we get;
`Y=1200+0.8Y_d+1500+5000`
`Y=1200+0.8(Y-T)+1500+5300`            `\because\Y_d=(Y-T)`
`Y=0.8(Y-2500)+8000`                            `\becauseT=2500`
`Y=0.8Y-2000+8000`
`Y-0.8Y=6000`
`Y(1-0.8)=6000`
`Y(0.2)=6000`
`Y=\frac{6000}{0.2}`
`Y=30000`

b- Government expenditure multiplier,
Goverment expenditure multiplier is calculated as;
`G_m=\frac{1}{1-b}`
`G_m=\frac{1}{1-0.8}`                        `\because\b=0.8`
`G_m=\frac{1}{0.2}` 
`G_m=5`

c- Equilibrium income level after a change in tax function;
The equilibrium identity is given as;
`Y=C+I+G`

Substituting the value of `C`, `I` and `G` we get;
`Y=1200+0.8Y_d+1500+5000`
`Y=1200+0.8(Y-T)+1500+5300`            `\because\Y_d=(Y-T)`
`Y=0.8(Y-T)+8000`

Substituting `2500+0.2Y` for `T` we get;
`Y=0.8{Y-(2500+0.2Y)}+8000`
`Y=0.8Y-2000-0.16Y+8000`
`Y=0.64Y+6000`
`Y-0.64Y=6000`
`Y(1-0.64)=6000`
`Y(0.36)=6000`
`Y=\frac{6000}{0.36}`
`Y=1666.67`

When the government imposes tax by 20%, equilibrium income will fall by `(30000-16666.67)=13333.33`.

6- Given, `C=2000+0.8(Y-T)`,    `I=1000`,    `G=1500`    and    `T=500+0.2Y`,
Find;
a- Equilibrium level of income,
b- Tax multiplier,
c- What happens to the equilibrium level of income if the government expenditure decreases to `1000` and investment increases to `1500`?

Solution;
a- Equilibrium level of income,
The equilibrium identity is as follows.
`Y=C+I+G`

Substituting the values of `C`, `I`, and `G` we get;
`Y=2000+0.8(Y-T)+1000+1500`

Substituting the value of `T` we get;
`Y=2000+0.8{Y-(500+0.2Y)}+1000+1500`
`Y=0.8Y-400-0.16Y+4500`
`Y=0.64Y+4100`
`Y-0.64Y=4100`
`Y(1-0.64)=4100`
`Y(0.36)=4100`
`Y=\frac{4100}{0.36}`
`Y=11388.89`

b- Tax multiplier,
Tax multiplier `T_m` is calcilated as;
`T_m=\frac{-b}{1-b}`
`T_m=\frac{-0.64}{1-0.64}`      `\because\b=0.64` Taken from the above equation.
`T_m=\frac{-0.64}{0.36}`
`T_m=-1.78`

c- If the government expenditure decreases to `1000` and investment increases to `1500` the equlibrium income level changes as;
The equilibrium identity is as follows.
`Y=C+I+G`

Substituting the values of `C`, `I`, and `G` we get;
`Y=2000+0.8(Y-T)+1500+1000`

Substituting the value of `T` we get;
`Y=2000+0.8{Y-(500+0.2Y)}+1500+1000`
`Y=0.8Y-400-0.16Y+4500`
`Y=0.64Y+4100`
`Y-0.64Y=4100`
`Y(1-0.64)=4100`
`Y(0.36)=4100`
`Y=\frac{4100}{0.36}`
`Y=11388.89`

Due to a decrease in government expenditure by `500` and an increase in investment, there is no change in equilibrium income level.

No comments

If you have any doubt or suggestion, you can comment. But please, do not enter any spam link in the comment box.